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SUMMARY

L The principles of the Crose -method of moment distri-
bution, which have previously been applied to the stability

i of gstructures composed of bars under axiasl load, are ap-
Plled to the atability of structures composed of long
plates urdsr lorgitudinal lcad. A brief theoretical treat-
ment o0f the esubdiect, as arplied to etructures composed of
elther bars or plates, 18 included, together with an 1l1-
lustrative example for each of ithese two types of struc-
ture. An appendélx pregcents the darlvatlion of the formulas
for the various stiffnesses and carry-over factors used
in golving problems in the stabllity of estructures composed
of long plater.

INTRODUCTION

The usual procedures for caloulating oritical buck-
ling loade for the nembers of complex structures are
often somewhat involved and are not easlly reduced to a
set of routine calculatione. Many practical engineers,
as a consequence, Ao not attempt to caloulate critical
buckling loadw. .

One approach to the solution of problems in the sta-
bility oi etructural members that is purely engineering
in charascter and that lends 1tself to simplified calocula-
tions is provided by use of the principles of the Cross
method of moment distribution (reference 1). The theory
of moment distribution, originally devised as a rTapld
method of stroves analysis, describes how the reslstance
to an exterrnal romeat, avplied at any Jjoint in a struc-
ture composed of bars, is distributed throughout the
etructure in accordance with the resistange of the varlous



Jointe to rotation. The original theory of Croses was
modified by James (reference 2) to take into account the
pouasibllity of mrxial load in the members,

The modifled theory of Jamee hae already been ap-
plied in reference 3 to the study of the stabllity of -
stiuctures composed of bars under axial load. Because of
the fundamental character of the quantities used in the
method of moment diestribution and of the formulas aseo-
ciated with them, it ie possible by suitable definltion
of the gquantities to apply an analysis exactly like that
of reference 3 to the gtudy of the stability of struoc-
turee composed of pletes under longitudinal 1load,

The present report gives a generalized derivation of
the formulas, aprlicable to both bar and plate structures.
The evaluatlon of various quantities for structures com-
posed of bars was given in reference 3. The corresponding

evaluation of the gquentities for structures composed of
vlates is given in an appendix to thils report.

SYMBOLS

Genersal:

b modulue 9f elasticlty

L) load on structure

) rotation of Jolnt

y deflection

r geries stabllity factor

U modifled etlffnees stability factor
Barse:

I effective modulus of elasticity for stresses beyond
the elastle range

I moment of inertila of cross section about an axlis per-
pendicular to plane of bendlng

A area 0f crogs section

{
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o] radius of gyration ( ;-—i—)

L length of bar

P aexial load in bar (absolute value)

on®E
)3

P.

c fixity coeffleclient in column formula % =

stiffness faotor ( B

<J 7=

Plates:

=l

effectlive plater modulue for atresses beyond the
’ elastic range

m Polegson'e ratio

A half -wave length of buckles in longitudinal direction
b width of plate

t thickneas of plate

3
D flexural etiffness of plate per unit length [——Eﬁ———-]

13(1-p?)
D effective flexural stiffness 0of plate for stresses
beyond the elastlc range [——j&————
{13(1-u3)

c lohgitudlinal compressive stfeas in platé

v2%
k = ~ o (always positive)
72D

M bending moment



M, anmplitude of sinusoldelly distridbuted moment

€ restraint coefficient

w deflection normal to plane of plate
Subscripts:

1 initial value

cr critical

¥ . flange

W veb
DBFINITIONS

Member.- The word "member" 1g used in this report to
indicate elther a bar or an infinitely long, flat, rectan-
gular plate.

Joint.~ A Joint in a strueture compoesed of plates,
by analogy t0 a Joint in & structure of baras, 1s defined
as the entire length of the intergeoction line between two
or more Joined plates.

Stiffness and carry-over factor.~ If a bar is on un-
¥Y¥ielding supports at each end, the moment at one end neces-
sary %0 produce a rotation of one-~fourth radian et that
end 1s called the stiffness of the bar and the ratio of
the moment developed at the far end to the moment applied
at the near end is called the carry-over factor of the dbar.

In order to write similar definltions of stiffness
and carry-over factor for plates, it 1s necessary to in-
clude a statement showing how the moment 1e distributed
along the edges of the plate. The gsolution of the dif-
ferential equation for the critical compreselive stress of
an irnfinitely long plate with gliven edge restraints re-
veals that, when the plate buckles, the moments and the
rotations at both edges of the plate vary sinusoldally
along ths ediges and are in phase with each other. The
ratio of moment per unit length at any point along the
edge to the rotation at that point is therefore oconstant
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along the edge for a given wave length. The following
definitlons of gstiffness and carry-over factor for plates

may therefore be written:

8tiffness ~ If an infinitely long flat plate 1s under
longitudlnal. compression with one unloaded edge on
an unyleldling support, the ratio of moment per unit
length at any point along this unloaded edge to the
rotation 1n quarter radlans gt that point when the
moment 1ls dAlstridbuted sinusoidally 1e called - -the
stiffness of the plmte.

Carry-over factor ~ The ratio of the moment per unit

length
loasded
at the
loaded
plete.

developed at any point along the far un-
edge to the applied moment per unit length
corresnonding poeition along the near un-
edge is called the carry-over factor of the

The foregoing definitlions make it possible to use various
stiffnessee and cerry-over faoctors in a eimilar manner for

both bars and

plates.

The syrhols used to designate the stiffness and carry-
over factor for the diffsrent types of support and re-
straint at the far end or edge are given in the following

table:

Stiffnesas

Carry-over
factor

Conditions at far end or edge

olY -1

Yar end or edge supported and
fixed agalingt rotatlon.

Far end or edge supported and
elastically restrained
againat rotation,

Far end or edge supported
with no restraint agelnst -
rotation,

Far edge free (no support
and no restralnt against
rotation), This condition
is not ueed in connection
with bars. :

FTar end or edge supported and
subjected to moment equal
and opposite to that applied
at near end or edge.
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The quantities SI, ¢I, 8II, ¢II of this paper corre-
spond to S8', Ct, 8", C", respectively, of reference 3.

The stiffness of a bar computed eccording to the def-
initicn nused herein 1s one~fourth that computed according
to the dofinition used by Cross (reference 1). In moment
distridbution the relative, not the absolute, values of
stiffnesses of the membars ars of importance. The fore-
going definition was selected so that the stiffness of a
bar of constant cross section with no axial load and
fixed at the far end would be EI/L inetead of 43I/L,

Sign convention.~ A clockwise moment acting on the
end of a bar or at any statlion along the side edge of a
plate is poeitive and causes positive rotation at that
end or station. An external moment applied at a joint ise
considered to act on the Joint; a counterclockwise moment
acting on a Joint 1s positive, '

CRITERION FOR STABILITY

It 1e assumed that all members in a etructure com-
posed of bars lie in the plane in which buckling occurs
end that the joints of the structure are held rigidly in
space but are free to rotate subject to the elastlic re-
atraint of the connecting members. Similarly, 1n a struc-
ture composed of plates, it i1s essumed that the joints be-
tween plates, or between plates and longitudinal restrain-
ing members, remain in theilr original straight lines but
are free to rotate subject to the elastic restraint of the
connecting members.

In the discusgsion that follows, either of two crite-
rione for stability mey “e used. For each criterion, the
stiffness and carry-over factor are functions of the axial
load in the bar or the longitudinal load in the plate.
(See references 2, 3, 4, and 5.)

Stiffness criterion for stability.- From a structure

of many members the section comprising one Joint shown in
figure 1 1s considered. ZFigure 1 may be interpreted as
being either a plan view of a etructure composed of bars
or ‘an end view of a structure composed of long plates.

An external moment of -1 ir assumed to be applied at the
Joint 4, If the structure is composed of plates, this
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. mouent 1g the external moment per unit length at the station
. under consldératioi, Because the angles between members

at the Joint are preserved and the rotations of all members
at the Joint must therefore bdo egual, the moment of 1 added
to balance this joint ie distributed among the members in
proportion to tholr stiffnoesses, as follows:

I'
§ 13, p
to member 1

zst,, y
54 5

I to member 1)3
8

i3

and so forth, The moment-distribution analysie 1s now
complete as far as momentaes at. Joint 41 are concerned.

For stability, the moment in the members must be
finite. The atiffness criterion for stability is there-
fore

1q I
s 13> 0 (1)

The condition of neutral etability gives the oritical
buckling load for the structure and is obtained by setting
the stlffpess stablllty factor equal to zero, or

I
I8ty y = 0 (2)

In the general case there is more than one critical
buckling load; thus, setisfaction of equation (2) is in-
sufficlient for the solution of a givemn stability problem.
Instead, the lowest load that satiefies equation (2) must
be calculated and compared with the load for which the
structure 1ie designed. Only if this lowest coritical load
1e greater than the design load 1e the structure stable.

According to the definition of stiffnees, the moment
distridbuted to any member must be the rotation of the
Joint multiplied by the stiffnees of the member. Hence
©, the rotation expressed in quarter-radiane of Joint 1
caused by the external moment -1, is

zst,




Touation (3) will bde used under the section Method of
Meking Preliminary Estimate of the Critical Load.

Seriss criterion for stability.- In a structure of
meny rcembere, the section comprising twge Jjoints shown 1n
figure 2 is considered. An external moment of ~1 1ls as-
sum3d to be apvlied at Joint i, If the structure is
coaposed of plates, thie moment ie the external moment per
unit length at the station under consideration. 3By a
moment-distribution mnalysis of reference 3, the total
moment in members lh at jolnt 1 1lse

I
s
- e )
or
I
25" 1n L (&)
I
Sij + ZS ih l - r
where
S, :C S:4C
r 1371 3 "§1 Y41 (5)

siJ + ESIih sJi + ZSIdk

For stabllity, the total moment in members 1ih must
te finite., The serles criterion for stabillity 1s there-
fore

r <1 (6)

The oondition of neutral stability gives the oritical
btuckling load for the structure and ie obtained by setting

r =1 (7)

The seme conglderatione that apply to the stiffness
criterion for stabllity aleo apply to the serles criterion
for etabllity. The lowest load that zatisfies the equa-
tion for neutral etakility (in this case, equation (7))
zuet be oalculated ard compared with the load for whigh
the structure is designed. If this lowest critical load
is greater than the deslgn lonad, the structure 1s stable.
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According to the definition of stiffness, the total
moment in members 1B at Joint' 4 must--be the rotation
of Jolnt 1 multiplied by the total stiffness. of members
lh, Hence O, +the rotatien in quarter-radians of Joint
1 ocaused by the external moment -1, 1is:

g = L Rt (8)
835 *+ ZSIih 1 -r ’

Formulas (2) and (7) are both derived in reference 3.
Whether formule (2) or formula (7) is to be used will de-
pend upon the partiioculsr problem. In cases in which the
structure is syumetrical about a Joint, the expressions
concernsed with the stiffness criterion usually involve
fewer calculations; when the structure ie symmedrlcal
ebout a member, the formulas concerned with the series
criterion offer certain advantages.

Stiffnees criterion for stability when structure is
gymmotrical about a mempber.—~ A modification of the stiff-
ness criterion in wnich the valuea of SIV are used is
gsometimes convenient when the structure is symmetrical
ebout a membsr, sa shown in figure 3. When this criterionm
e used, opposing unit moments are applied at the two ends
or edges of ;he membher atout which the structure ls sym-
metrical, The stiffness stabllity factor of equation (2)
for the Joint 41 1in figure 3 18 then written:

ESIi = SIvid + ESIih = 0 (9)

An 1llustration of the use of this specilal application of
the stiffness criterion in a plate provlem 1e¢ 1ncluded in
the section on Exanmples,

GARRY-OVER FAGTOR AND. STIFFNESS

In order to check the stability of a group of struo-
tural memberas by use of the equations previously glven,
additional equations for the carry-over factor and stiff-
ness are required,



10

The member iJ shown in figure 4, on an unylelding
support at 1 and elasticzally restrained at J by mem-
bers Jk 1g congidered., The members Jk are also elas-
tically restrained at thelr far ends k. By e moment-
dletribuiion analysis (reference 3) 1t follows that the
carry-over fasctor 0113 is

zgl!
cIiJ = Gij II .11{ - (10)
S Ji + LS"‘.!k
and the stiffness inJ 1s
11
5
sI, . = #5101y (11)
Ty Lot
I F R B
Substitution of equation (10) in ecuation (11) gives
SII 1
SIiJ = i} (13)

. ZSIJk

l1 -6
Jk

Yor memxber 1), the limiting values of the carry-
over factor and of s%iffnees glven by equations (10) and
(12), respoctively, are obtainsd as follows: When the
far end J 1¢ pinned, there 18 no elastic restralnt at
J eand ZSIJk = 0, TFor this limiting condition, 0113

= GIIiJ = 0, and 5113 = SIIid. When the far end J 1is

fixed, there 1s complete restraint at J and ZSIJk = o,

For this limitirg condition, OFyy = Cyy end &Iy = 8y
where
1T
S13 = 1] (13)
RERF E LT

A gimiler eauatlion, which expressees siV

iJ in terms
of SIIiJ and 031, can be uvbtalned from equatidn (11)
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as followe: If the restraint at the far end is such that
cIij = ~1l, there muet be, at the far end, a moment of the
sane magnltude but opposite in direction to that applied

at the near end. 1If, therefore, 0113 in equation (11)
equals -1, SIiJ bocomes SIvid. where

I1
IV, = Sy (14)
1+0‘11

The expressions used for the computation of numeriocal

values of 8§, C, SII. Slil, and 81V for plates are
given 1in the appendix.

Up to thie point, all the equations in this report
are general. In nearly all cases encountered in practice,
however, the cross section and axlal load do not vary along

the length of each member. For this special case, ciJ
= G434 S35 = S31, and so forth, In practical problems the

numerical values for these quantities are obtained by use
of tables, cucih tables avec given for bars in reference 4,
where the argument 1s (L/J)eff, and for plates in ref-

erence 5, where ike argumente are Xk and A/b.

?

METHOD OF MAXING FRELIMINARY RMSTIMATZ OF THE CRITICAL LOAD

In order to determine the lowest critical load for tn
the structure, it is necessary to test elther equation
(2) or equation (7) for neutral stability for different
assumed loads. The lowest load that satiafles elther
equatlion 1s the critiecal load for the structure. If
evaluation of the stiffnese or the series stability fao-
tors has required lengithy computations and if all the as-
sumed loads for which these factors have been evaluated
are less than the lowest oritical load, as evidenced by

the fact that ESIij remains positive or that r remaine

less than unity, a method utilizing the work already done
may be used to estimate the oritical load, This estimated
load may ihen be used as a trial load in equation (2) or
equation (7).,
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The method of estimating the lowest critical load is
based upon principles used in the analysis of experimental
cbservations in problems of elastioc stability (refereaces
€ and 7), Southwell (reference 6) mentioned that the un-
evoldable imperfections ln practical s4ructures prevent
the realization of the concept of a critical load at whioch
deflections Pegin. Instead, the inltial deflections pres-
ent in practical structures steadily grow with increase
in load and, according to the ugual theory, the deflec-
tions become infinite as the eritical load 1s approached,

The general relation between load and deflection for
problems of elastic etability (reference 7) shows that,
1f (y ~ y3)/(P - F,) is plotted as ordinate against y -~ ¥,

as abscissa, the curve obtalned when P approackes P,,

is eseentially s straight line of which the inverse slope
is P,p, - P,. Eers y 1e the deflection at load P 1in

a member, ¥y, and P; are initial velues of y and PF,

regpectively, Pcr is the lowest critical load, and

P, <P <P,

If simultaneous readings of load and deflection recorded
in a test are plotted as described with any load P as
the initial reading, the velue of Pyp - P, 1is readily

obtained. The value of F,,. 1e then given by the rela-
tion

E (Pgp - P;) + Py (16)

er © cr

The relation between losd and deflection can also be
aprplied to load and rotation of a Jjoint provided that
there is an initial rotation of ihe joints. The inlitial
rotation 1s obtained by the apnlication of the external
moment ~1 at somse Joint, after wkhich the load on the
etructure is applied. As the louwest crltical load 1a
approached the rotatiomns become infinite.

If the dliatridbution of the loade throughout the
structure does not change ar the total load W increases,
the axial or longitudinal ltad in each member ls propor-
tional to W, If (v - 6,)/(W - ¥,) is plotted as ordinate
againget & - C, es absciasa, the curve obtained when W
aprroaches wcr lg essentially a stralght line with in-
verge elops W,, - ¥W,, where €6 1is the rotation of a
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Joint under the external moment -1 when load W 1is on
the structure, 6, and W, are initial values of 6 and

W, respectively, Wy, 1s the loweet critical load, and
Wy W< W,

¥Vhen sirultansous values of load and rotation are plotted
as desorlbed with W; as the initial load, the value of

Woyp = W 1g easlily obtained. The value of Wy, 1s then
€lven by the squation

Wor = (Wop = Wy) + W, (16)

The procedure %o be.hsed in estimating the critical
load for a group of structural members is as follows:

l. JYor each of the loads W sssumed in the appllca-
tion of one of the stablility criterions (equation (2) or
equation (7)) to a joint, calculate the rotation 6 of
this Jolint by means of eoustion (3) or equation (8).

2. Designate the lovest assumed value of W and
the corresponding value of & @ae W, and 6,, respec-
tively-

2, Plot the curve of (6 — 0,)/(W— ¥W;) as ordinate
agalngt € ~ €, ae absclesa and estimate Wy, from the

glope of the reeulting line. If the curve obtalned 1ls
not essentlally a strailght line, successively higher val-
uee of the assumed lcade W ehould be designated W,

and the value of wcr re~esatimated. The accuracy of the

estimated value of Wy, ie improved as both W and W,
approach wcr.

Ln example of the application of this method for pre-
dloting the lowest erilticel load iz glven in reference 8,

As applied to a structure of platea, thls method
glvees a critical load for some particular value of tha
half wave length A, The value of W,, that satisfles

equation (2) cr equation (7) and is a minimum with re-
svect to N nmnust finelly be foundi as in the example,
given subsequoently herein, in which tha uee of this method
of satimating the critical load for a glven wave length
wag not required.

&
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DISCUSSION OF METHODS

Each of the two equations for neutral stabllity con-
teins the stiffneee of certain members elastlioally re-
strained at theilr far ends or edges by other members,
These other members may also be elastically restralned at
their far ends or edges by stlll other members, and so0 on.
By successive application of equation (12) the restrain-~

"ing effect of all the members in the structure can be con-

sldered.

In practical calculations for strnotures composed of
bars, modification of the actual structure dPy the intro~
ductlon of pine at certain Jolats is usually necessary. .
It has sometimes been the custom to consider only one
member elastically reetrained at the ende by the adjacent
meabere, which are assumed to be pinned at the far ends.
The aaloulation of wcr by use of amall groups o0f mem-

bers in this manner 1e qulte 1nadequate. Treatment of
much larger groups of members in one calculation 1s neces-
sary 1f a reasonably accurate. value of Wgp 18 to be ob-

tained.

I1f the stresees in any of the membere of a structure
are beyond tae elsstic rerge, the reduction of the modulus
of elasticity at these stresses muat also be coneldered,
Discussions of this reduced modulue for structures com-
poced of bars are given in referensce 3 and 8, Reference
9 discusses the reduced modulus of elasticity for plates
&t high stresess.

EIAMPLES

Structure composed of barg.—~ The example of a struc-

ture compoged of bars presented herein 1s identical with
tha!t given in referexce 3; for the solution of the prob-
lem, the tablea of reference &,. rather than the more ex-
tenslve tableg of reference 4, wers used.

A contlnuous member of 1036 steel is to be designed
to carry the loads shown in figure 5, Tor elmplicity,
the same crogs sectlon will be ueed in all spans.

The ucual column formulas for 1026-steel tubes are:
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For %< 124,

- ]
P - 36,000 - 1.172 5-<5{> (17)
a e \ p

For => 124,

a6 x 10°
-

i(L

¢ (Pj)

It 18 desired that L/p %be lees than 124. Equation (17)
therefore 18 used and, on the asrumption that ¢ = 2, a
tube of the following dimensions 18 selected as a trial
deslgn for compression msmbers ga, bc, and de.

P=.
3 (18)

Digmeter, 4 . . . e e « o« o« In. ... 1.62b

Wall thicknemre, t . . « . e« « In..... 0,065
Ares, A . . . . . & ¢ . . . . . .8q ir... . 0,3186
Moment of inertia, I . . . , . . . . in:4% _...0,09707

According to the prchlem, this tube is used as a continuous
member from y to f (fig. 6).

In order to check the stability of the tube selected
in the trial deslgn, the critical buckling load will be
calculated and compared with the lcade given in figure b.
The axiel 1load in the tension spans 1is assumed to be al~-
ways 8610/9940 or 0,866 times the axial load in the com-
presslon epans. This assumption conforms to the condition
that the forces in all members increase in the same ratio
as the lbad on the structure incresses.

Both the dimenslions and the loading of the member
shown in figure 5 are symmeotrical about sepan Dbe. It la .
therefore convenient to deterrine the critical duckling
load by use of the series criterion for etadbility. If
the unit external moment to be applied is at Jjolnt b,
tke serlies stabllity faoctor 1s given by equatlon (5) with
the summation eigns omitted. If the symmetry about span
be 1a conglidered, the serlies stability factor becomes

2
(sbccbc)

= (19)
(Spe + §70q)°

r
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where

sIde =
8 of
+ SII

3

de ef

In the equation for sIde it 18 assumed that the ends at
¥y and £ are pinned.

The detailed procedure of oalculating the critical
buekling load 1s as follows:

l. Assume & serles of values for the axial load in
one of the members. In order that the values of load be
reasonable, a compresasion member should always be selected
and the values of the axlal load for thls member computed
from the column formula by use of a serles of values of ¢.
In this problem, compression member be 1s selected and
the column formula is equation (17).

2, JYor each assumed axial load in the selected mem-
ber, calculate the corresponding axial load in every other
member, In this problem the maxlal 10ad in all compression
membere is the same and the axial l10ad in the tension mem-
bers is 0,866 times the axial load 1n the compresslon mem-
bers.

3. Tor each loed in each of the members, calculate
P/A, E, and (L/J)efs. In this prodlem, ¥ 1s obtalned

from equation (17) by methods outlined in reference 3, or

- 3
736000 ~ 7
1.172

- 1 P
E = ——
EY

4, Tor each loasd in each of the members, determine
the value of the terms requlred to evaluate equation (19)
by use of the tables of reference 3 or 4,
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- +B;- ‘The aseumed 1load that gives r =.1-  1g the orit-
ical buckling load.

The results of thie procedure as applied to the prodb-
lem of figure 6 are given in table I; the velues of o 1in
the first column are given for reference .only 'and, as
stated in psvagraph 1 of  the foregoinrng procedure, were so
assumed that e serles of reasonatie values for the axial
load ‘P in the compression member ©bo oounld be obtained.
In the last column cf teble I are glven the values of r
corresponding to the agsumed values of o, As the value
of 6 1i1norsaseg from 1.4 to 2.6, the value of r 1in-
oreases from 0,173 to 1,63, If the data of table I are
plotted, 1t is found that when r = 1 the lowest critical
bucklling loade for the trial design are

za, bo, and de . . . . . . 10,360 ocompression
ab and o4 . . . ¢ & . . 8,890 tension

These criticael loads are greater than the loads to which
the rospective members are sudbjected (see fig. 5). The
tube selecied for the trial design i1s therefore stable
and the margin of safety for the system 1a

10260 8890
——— = eme——— = 0.03
9940 8610 1

A gingle margin of safety 1s obtained for the whole system
regardleses of which member 1a used for i1ts calculation be-
cause, when the critical load 1s reached, all members de-

flect.

More than one type of instability 1s possible, theo-
retioally; therefore, as the lovads P 4increase, there 1is
more then one value of P for which r = 1, (See tabdle
I.) Tor each type of instability there is a correspond-
ing oritical load. In deeign, however, the lowest orit-
1cal load should be calculated and compared with the loads
€lven in the problem.

Table I shows further that, for values of ¢ Dbetveen
l.4 and 1,6, the value of SIde changes from positive to
negative. According to the stiffness criterion for sta-
bility, this change of sign . means that members de and
ef, considered alone, have changed from stable to un-
stable. It is also noted that Sch changes from positive
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“t0 negative for values of ¢ between 2.6 and 2.7; members
cd, de, and ef, conaidered alone, have thersefore
changed from stable to unstable, but at a much higher
load. The change from astable to unstable for all members
ooccuras for valuea of ¢ between 2.5 and 2,6 when r = 1.

Struoture compored of plates.~ The critical compres-

sive gtress for local instability of a 24S~T aluminum-
alloy Z-gection column with the crosa-sectional dimensions
shown in flgure 6 is to be determined.

It 18 convenient in symmetrical plate problems of
this type to uee the modification of the stiffnese crite-
rion for etebllity previously discuesed. If opposing
unlt external moments-are apnlied at the Joints between
the web and the flanges, the stiffnees stabllity criterion,
es given by equation (9), 1is

zinJ o SIIIF + Sva a 0 (20)

where the subecripte F and W refer to the flange and
the web, reaspectively.

The tables of reference 5 give the values of gliI
and 8IV 1in the dimensionless form SIII/(D/v) and

sIV/(D/v) rather thah directly. It is therefore desir-
able to write egquation (20) in the form

ENCRNOR

If thisg eaquation 1« divided by (“\ -1t becomes
\b/y’

RN oNeLA

Because Dy/Dyp = (ty/typ) , the atadility criterion may
be written in terms of the modified stiffnees stabllity
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"~faotor- -U; as -~ -- -~ - : . R

EET@

The detalled procedure of caloulating the ecritical
compressive streese 1s as followa:

1. Compute the ratios ty/ty, by/by, and by / tye
3. Asesume a value of A/bp.

3. Compute A/by from the equation

b
A A,

by L3 by

4., Assume s series of values of ky and, for each
value of kg, compute ky from the eauation

k
S Fbr
— X —
ty  Pw

The indicated procedure is adopted as being somewhat more

"¢convenient than assumption of the strees and computation

of the corresponding values of ky and ky. It is per-
migsible to compute ky from the given saquation even

though the stress 1s beyond the elastic range, because
the ptress and thue, by assumption, the sffeotive plate
modulue are the same in the web and the flange.

5. Evaluate the modified stiffnese stability factor
‘U from equation (21) eand the tables of reference 5.

6. Plot U agalnet kp or ky and note the val-
ue of k for which U 1g equal to sero,

7. Repeat steps 3 to 6, assuming different vaiues
of A/br.
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3 8. Plot values of kyp for U = O .against A/byp
(or ky for U = O against A/by) to determine the min-

imum value of kp (or ky).

9, With this minirum value of k, evaluate the
critical stress from the formula (see definition of k),

k3D

L =-
13

er

which may be written, for the webd,

kw"aﬁtwa ( )
c = 22
er 12(1 - u)a‘bwa
or, for the flange,
2 3
Egn Bty
Oer © 3 a (23)
12(1 - 1%)vp
The value of o0,,, will be the rame regardless of whether

equation (22) or (23) 1s used.

The rerults of this procedure as applied to the probs
lem of figure 6 are given in table II. The values of ky

for U = 0 4in the last column of table Il were determined
according to step 6. If these values of ky are plotted

against A/by (step 8), the minimum value of ky 1is

found to be about 2,9. (Ses fig. 7.) The criticel com-
presslve stress for local buckling of the section shown
in figure 6 is then, from eauation (32),

2.9 x 9.87 x 10.6 x 10~

o = 17,400 pounds per squere inch
cr 12 x 0.91 x (40)2 A per #d

This method provides & relatively simple means of
predicting the critical~stress values for columns of
Z-gectlon and other simple cross sections, such as I-,
channel, and rectangular-tube sections. Charts glving
the values of k determined by this method which were
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"prepared for wide ranges ©f the dimension ratlos, are pre-

sented in reference 10 for columns of I~, Z-, channel, and
rpotangular-tube section,

An alternate method of solution for problems of this
type makee use of the charte of referenceg 11 and 123 and
the tables of reference 5. An assumption is made as to
vhether the flange or the web will be primarily.responsi-
ble for instadility. If the flange_le expected to be pri-
rmarily responeible, the value of Sva for the web 1la de-

termined from the tables of reference 6. This value i@
then ueed in computing the restraint coefficient € (ref-
erence 11 or 12), and the value of k is found from fig-
ure 3 of reference 11. Because .1t ig necessary to_assume
a value of k and K/b in order to determine Sva, the

method will obvliously irvolve a trial-and-error procedure,
Furthermore, if repeated calculations show that SIVH ie

negative, the mssumptlon that the flange would be primarily
responsaible for instability 1s incorrect. In this case,
it will be necessary to evaluate SIIIF and to determine

k from figure 3 of reference 12. A detailed example of
the application of this method 1s given in reference 10,

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Fleld, Va.

APPENDIX A
DERIVATION OF STIFFNESSES AND CARRY-OVER FACTORS

Plate Under Oompreesion

In order to apply the method of moment digtribution
in any form, the wslues of gtlffnegsnrs and carry-over
factors are rsgquired zor the members in question. For-
mulas for the eveluation of these quantities for barse
were developed in reference 3., This fppeudix glves the
corresponding derivation of the formulas for plates; the
slgn convention used, as distinguished from that given,
in the section on Definitione, coprresponds to that of
reference 13, in which deflections W are positive down-
wvard and a moment ig¢ positive if it produces compresslon
in the upper fibders,
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General deflectlion surface of a plate buckled under
compression.,~- Before the values of stiffness and carry-
over factor for flat plates under various conditions of
edge regtraint may be computed, the deflection surface of
a flat plate buckled under a compressive load with a mo-
ment applled along one unloaded edge must be described,

An infinitely long flat plate under compression is
shown in figure 8 with coordinate axes. TYor equilibrium
of an infinitesimal element of the plate, the following
equation must be satisfied (reference 13, p. 324),

4 4 ' 4 2] a

o v IR ™k O W
Q¥ 42 — + + = (A1)
dx dx" oy2  dy* »2 dx%® 0

On the assumption tha* the plate 1s infinitely long in
the direction of =x, the conditions at the ends do not
matter; the solution of equation (Al) is therefore taken
in the form

w = f(y) cos %? (A3)

The unknown function f(y) may be determined by subd-
etituting the expression for w into eauation (Al). It
is found that the function f must satisfy the equatlon,

4 2 .3 4 4
a f _2n 4 fofm _ wk

&L - sen o i TE)e =0 A3
2yt R (;\T 7\%") = (a3)

Bquation (A3) is an ordinary differential equation of the
fourth order, the solution of which is

t = c; cosh %F + 03 sinh %F + 65 coO8 %§-+ ¢, 8in %F (44)

wvhere o0;, €3, ¢z, and ¢, are arbitrary constante and
t a =1 [% %~+Vﬁ;
b ]
B=l'l'|' x —_X-'.E
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The deflection asurfaoce of the plate is now found by
substituting thie result for f 1in eguation (A42):

W= [c;cosh %. + cgsinh %’L + cucos _.ﬁb_y + ¢4Bin Bb—y] cos “T:E (45)

In this solution, four conditione may be imposed along the
unloaded edges to fix the four constante. One of the four
conditlons will always speclfy the presence of a moment

M, cos %? along the near edge, and another will specilfy

that the deflection w along thig edge ie zero. The re-
maining two conditions will be varied to suit the condil-

tionas at the far edge of the plate of which the stiffness
lg being computed.

Stiffness of a plate with far edge fixed.- Figure 9
showe a flat rectangular plate under compresslion with a

moment M applied along one edge at ¥y =-% and with
complete restraint against rotation along the parallel
edge at y = %. The stiffness S of the plate is defined

M
5 = (e->y=_% (16)

-2
where (e)y=_% is the rotation of the edge at y = -3

expressed in guarter- radians.

The general expression (A5) for the deflection of the
plate must be specialized to the case of figure 9 1n which
the boundary conditlione are?

(w)y=i% = 0 | (a7)
- 3 3
- D (%;% + B %;%) b = M = M, cos %F (a8)
y=-3

2



g—‘i) = 0 . (a9)
¥ y%

After determination of the arbitrary conetants in
(A5) by use of these boundary conditions, the deflection
gurface for the case of figure 9 is found to be

B L4
lafl.nlrrg B:l.::l--.bz
‘ (a. tenhZ + B ¢ ) s g
a - - -
qu e'.lnh2 sin2
e 2 o B @ B
D (a°+B°) o tanh'E + B tan 3+ Q coth 5~ B cot 5

Tou

-
coahgz cos%?
(u. coth— - B co ) - B
cosh— cos-é-

X
cos Al10
tnha'+Bt B+a.cothE—BcotE » ( )
@ tant 3 &3 2 )

From this deflectlion surface there is obtained

Dy Mb 1
6 =) =g (A11)
.2 (a;) y=-2= *5{ca1p%) : .
o B @ .. B
@ t-anh—2-+ B tan-e— a cothE— B cot-é-
where 6

le expressed in oguarter--radians. Substitution
in equation (A6) gives

[( ) ('"> ] - * - = ls_I;—_.; (a12)

a B a a B .B
anhs + 5t zo0ths ~ Footy

oo

_
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Oarry-over factor of a plate with far edge fixed.-

The carry-over factor i1s defined as the ratio of the mo-

- meft dBvé18ped at the far edge y = % (fig. 9) to the

moment at the near edge ¥ =-%. The moment developed

at the far edge 1s

— 3 H]
(M) p = -D _a_; + _3__' (A13)
Y’z oy dx? y’%

where w 18 the deflection of the plate of figure 9,
given by equation (ALO),

If the indicated dlfferentimtion of equgtion (A10)
15 made and the result substituted in equation (A13), it
is found that

fﬁanhg-rgtang-Eﬁxmh%-bgcotg )
p oty T olals T 3 5¢0% -
M) ¢ =- My cos == (A1k)
T3 Zann® & Boan® 4+ Seotn® - Beotf A
3van grang + Feothz-= 3003

The moment at the near edge is, from equation (A8),

(H)y=_% = M, cos %} (A15)

. By definitlon, the carry-over factor is

~(M
)y=+h' (gﬁanhg-+ EtanED - (Eboth2 - EOOtE)
2 _\2 2 2 2 3 2 (Al16)

] 2

° ="
=2 a, a4 BianB )+ (2 o . Bootf
v 3 -(2tanh2 2tan2 Ecothz Ecota

with the sign of the moment at the far edge changed to
conform to the sign convention given in the seotion on
Definitions,
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Stiffness of o plate with ites far edie hinged.-
Flgure 10 shows a flat rectangular plate under ocompres~

'sdon with the two edges ¥ ==E%: hinged to supports. A.
moment M is applied to the sdge y:z—g; and the

stiffness of the plate 1s defined as

11 M
11 = (9>y=.l (A17)
2

where (6)y,_h -1s the rotation of the edge y = -% ex-
2 .

pressed in guarter-radians, The general expression (AB)

will again be used to compute 6 and the boundary con-

ditions will be:

= 0 8"
W) _sp (418)
2
= (33w baﬁ> ™
-D ( + B — = M = Mg con (a19)
oy?® 0x?/y=.2 ° A
2
'a*w 33w
+ B = 0 (AQO)
dy? .  ox? Y .

By uese of these boundary conditions, the arbitrary con-
stante in equation (A5) may be computed, and it is found
that the deflection surface for the case of figure 10 1lis

Kb sinhy  cosh- ooa—?—r- eingy-

(¢] b b [} b T

W — = a"' 5 5 |08 X (a21)
2D(a® + B2) sinh-é- cosh—z- cosz sins

From this defleotion surface, the magnitude of the
fotation © along the edge ¥y =-—% is found to be
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Ty o few) o A o @« - B B
(e)y.___;.; u(g;-)y: “g= S(erapa) (a. tenhs+ B tenm+ o ooth;- B cot'g) (a22)

where 6 1s expreseed in quarter-radians. Upon subeti-
tution of this expression for 6 in equation (417), it

’ is found that
: a -]
OO
2 2

a .d g,a .;a B .B
Etanhz + %tanz + -2-'coth2 acota

gIl .

(A33)

o' 9]

According to the boundary condition given in equa-

tion (A20), there is no moment at the edge y = % Hence,
the carry-over factor ¢l with the far edge hinged is
zero,

Stiffness of a plate with far edge free.- Figure 11l
shows a flat rectangular-plate under compression with one
edge y = b free and a moment M applied to the paral-
lel edge y = O, The stiffnese of the plate is defined

as
sIIl (-‘i> (a24)
e y = 0
where (6) 1s the rotation of the plate along the

. y=20
f edge y = 0 and ie expregeesd 1n gquarter~radians.
The general expreselon (A65) is used to compute Hhe

rotation 6. The boundary conditions for a plate with
far edge free are:

» (w)

5 g=0 = © _ - (az8)

— 8 a ' - .

-D :_;_4- u%—}) =M =N coe"—:~- (A26)
y x 0

y=

[ LE
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- ] 3
. (9—5 + u-a-% = 0 (437)
oy ox y=b .
- 3 3
[9—- + (3 - 1) _3_"_] = 0 (a28)
dy° dxBdy
y=b

Upon determination of the arbitrary constants in
ecuation (AB) by use of these boundary conditions, the
deflectlon surface for the case of figure 11 ie found to
be

M b
w = s f oa-a-Z - coshgz + @ sinhgz
D(a?+p?) L b b b
_ na(sinh o -~ d cosh @) - mp sin B s1nfl | coa™= (429)
mB cos B ® A

where

- (8) - (""\
HORFER

o = m®B coeh @ cos B ~ n®q sinh o ein B + mnP

maﬁ ginh o cos B - na cosh a sin B

From the deflection surface, the rotation along the edge
y =0 1p found to be
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(8) _ l.(a_! = [ 1o ]Ea.ﬂmn + af(n?+n®)cosh o cos B + (m?p-n®c®)sinh o sin B (;30)
y= 720 { Dla®+p?) n®p sinh o cos B ~ n® B cosh a sin P : ¥
where 8 18 expressed in quarter -radlans. Upon sudbstitution of this expres—’
‘glon for O in equation (A24), the stiffness i1s found to be
36 o
- -
B a a2 B a a 3 3 0 B
30 (}-—tm1 é)taﬂ1§-§11 @.+tmﬂ1 é)tmli
(431)

P
)

e (0 e (o Yo P o

NIQ

The trigonometric and hyperbolic functions have been converted to the half angle

in order that the same functione ¢can be used as in the calculation of the other
atliffnesses.

ée
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Aocording to the boundary corndition of equation (A27),
there is no moment along the edge y = b. The ocarry-over
faotor OIII 14 thue zero for the far edge free.

Stiffness of a plate with equal and opposite moments‘L
.applied along the unloaded edges.~ Figure 12 shows a flat
‘rectangular plate under compression, with equal and op- _
pésife momente applied to the edgee ¥ = i%ﬂ The stiffness

of the plate 1s defined as

sIV . (X (133)
8/yad
2
where (Q)y=-h ie the rotation along the edge ¥y = -%
- 3 .

eipreaaed in quarter-radians.

The boundary conditions for this case are:l

(')y=~_hl’. = 0 : (_Aaa)
2 '
2 -]
p(L+ ud :) = -M = ~My cosx (a34)
oy ox y=*%

According to the sign convention of the appendix, the
momente at the two edges have the same sign although they
act ln oppoesite directions. By meane ¢of theee boundary
conditions, the arbitrary congtants in eauation (A6) may
be computed, and the deflectlion surface for the case of
figure 12 1s found to be

- cos 2% (A356)
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From thig ‘deflection surface, the rotation O aloung the
edge y = -% is found to de

DI

(8) - anh— + —»tanﬂ> (A36)

Y
ol

FEZoIM

which 18 expressed in gquarter-redians. Substitution of
thle expression for O in equation (A32) gives the etiff-
ness of the plate,

sIV _ T <_>= ()2 stt

2bc¢- B 1l + ¢
tanh2 2tan2

(A37)

Because the moment at y = %‘ is equal and opposite

to thet at y = m%, the carry-over factor 01V 1g -1

=}

in accordance with the sign convention given in the sec-
tion on Definitions,

Plate under Tenslon

If the direction of the applied longitudinal force
on the plate of figure 8 is revergsed, the plate will be
under tenslon and equation (Al) will become

4 4 4 2 a8
a__..+a s aw _TmkOWwW | © (a38)

dx* dx3oy? dy*e 2 dx®

The formal solution of thls equation 1s preclsely the
same as equation (AB), except that the parameters o and
B are now dofined By

a = ﬂ/r.;,_'_ /‘i + 1V x (A39)
) A A
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p=n/;'; /—%+ 1/ & (A440)

Because the gtiffnesses 5, SII, SIII. and SIV.
and the carry-over factor O, as caloculated for a plate
under compression, are based directly upon equation (A5),
1t follows thst the sxpresslion derived for each one of
these quantitiss 1s stlll correct when the plate ie under
tenglon, provided o and 8 are now given by equations
(439) and (A440).

The new expresgions for « and f are complex and
nay be written in the form

= A + 1B ) (A41)

wiR

-g-u B o+ 14 (A423)

vhere

(A43)

The expressions (A4l) and (A42) for a and B are
substituted into equatiodns (413) for 8, egquation (A23)

for 81T, equation (a431) for siII, equation (A37) for

SIV, and equation (A16) for C. The results of the sub~
stitution show that, for a plate in tension,

>|c

>l

(844)

ER I P T (445)
Agin“2B-B"ginh“ 2A

D AB Agin4B-Bginh4A
S=§
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P, - ] ! -5 a .
gll . D ,4p {(c0sh24+00s2B)(einki®a+e1n?B) (246)
b Bginh4A~AsindB
11_3,, A(m®-164°p*+8B°) p1nlBB (n°~16A°B°-8ms®) s1nhMa (a7)
b Ba(m hsa)B-Aa(m+hBS)a
-(A74+B?) (m?-16A2B3) ( cosh?2Aco8?2B+s1nh32A81n32B)
+,- A® (o413 ) 232 (m-1A®) a.] { e1nh®2Ac08°2B+cosh?2481n?2B)
Iv D cosh3A + coaZB
= -—A
5 b Bginh2A + Agin2B (A48)
C = Acosh2Asin2B - Bginh3Acos2B (449)
Becosh2Asinh2A ~ Agin2Bcos2B
where
a
m = 4(a®-3%)up %é) (A60)

These formulas permit tables of stiffnesees and
carry-over fectors to be prepared for a.plate in teneion
similar to the tables of reference 6 for a plate in com-
pression. BSuch tables, however, have not been prepared,
and in lieu of tkem, formulas (A45) to (A49) may be used
directly 1f the need should arise.
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TABLE I

RESULTS FOR SOLUTION OF BAR PROBLEM®
[For member ef, P = 0, P/A = C, B =28 x 10° 1b/sg ian.,
(L/3)gpg = 0, and §*1 ¢ = 3.397 x 10* 1b-in.]

Members .bec. end de Member cd
¢ P — A P _ I
P T 3 (2 P T B T
& \J )eff A, ‘ (J)eff
(1b) {(1u/sq in.) | (1d/eq in.) (1p) {(1v/sq in.) | (1b/sq 1in.)

1.4 | 9,23 27,130 17.30 x 108 | 3.72 | goWo 25,230 23,49 x 10° 2.97
1.5 9,430 29,530 16.33 3.85 8170 25,620 22.98 3.03
1.6 | 9,550 29,990 15.5 3.97 g270 25,970 22.52 3.08
1.7 | 9,670 30,340 14.8 .10 | 2370 26,270 22.09 3.12
1.8 9,770 30,660 14.16 .22 | 8460 25,550 21.69 3.17
1.9 9,860 30,940 13.52 u.ai 8540 26,790 21.32 3.21
2.0 9,940 31,150 12.98 4. g610 27,010 20,59 3.25
2.1 | 10,000 31,420 12,4 4.55 8670 27,210 20.68 3.29
2.2 | 10,080 31,€E30 11.33 4,66 | 8730 27,390 20.38 3.32
2.3 10,140 31,820 11. 477 8780 27,560 20.12 3.35
2. 10,190 31,990 11.10 4.86 | 8820 27,700 19.89 3.38
2.5 | 10,240 32,150 10,71 4.96 8870 27,840 19.63 3.0
2.6 | 10,290 32,523 10.34% 5.06 | 8910 27,970 19.1 3.4
2.7 {10,340 32,1 9.99 5.16 | 8950 28,090 19.21 3.6
2.8 | 10,380 32,570 9,66 5.26 | 8990 28,210 18.99 3.49
2.9 | 10,10 |- 32,680 9.38 5.33 9020 28.300 18.85 3.51
3.0 | 10,450 32,790 9.10 5. 9050 28, 18.66 3.53

9g



Member be Member cd Member de
gl - gl
de cd

c r .
Sbe 52pe Cpe ¢ 15 o? 5140 (1b-1n.) }(1b-in.) ;

a de - )

(1b-1n.) |(1v°-1n.%) ¢ (1t~in.) ° (1v~1z.)

1.4{ 1.40ux 10*|5.45% 10% | 0.122% |5.07x 1C* | 2.783 | -2.19x 1o* 2,643 51,010 -{0.133
1.5( 1.155 F.24h | .1197 {5.01 3.989 | -3.41 ~32,691 50,100 | .138

1.6 .930 2.07 JA17H [4.95 5.964 { -4.56 -2,476 49,200 | .1
1.7 .699 .99 1151 |4.90 10,22 | -6.44 -5,189 48,320 | .163
1.8 .ue4 4.94 1130 k.85 22,94 |-10.01 -7,833 47,560 | .181
1.9 .289 - 41.88 .1112 {4.80 582 |~16.59 ~10,3 45,560 | .200
2.0 .095 4.92 .1096 |k4,76 225.3 -51.71 ~13,140 ,680 | .226
2.1| -.101 4.99 1077 [U4.72 5.8 .12 -16,150 ] ,ago «261| -
2,2| -.302 5e13 1064 {L.68 56.23 | 16.068 ~19,590 43,450 | o314
2.3 -.512 53l 1051 | 4.65 22.72 | 10.25 -22,020 b2 470- .253
2.h| -.688 5e54 .1040 { 4,62 12.47 7.51 ~26,050 40,700 | .hgl
2.5| -.896 588 .1026 |L4.58 7.619 13 -7 250 eI | elev
2.6 -1.118 6.33 L1014 |4.56 5.189 57 ﬂ.slo 30,870 | 1.63
2.7 ~1.301 6.91 .1006 |[4.53 3.798 3.73 ,050 -8,750 | 1.38
2.8 -1.633 [ 7.71 .0994% | 4,50 2.930 | 3.095 ~58,070 80,560 | 187
2.9] -1.911 8.69 .0986 | 4.48 2.2 | 2.633 ~74,590 59,480 | 533
3.0| -2.227 9.96 .0978 | 4.15 2.023 | 2.239 ~102,200 53,820 | 1,00

8Pable is from reference 3, table III.
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TABLE 11
RESULTS FOR SOLUTION OF PLATE PROBLEM

3
(kr (kw sva Sva /2! (u) sIIIF , -[: ((k)tU=o
8 - ; b~ o= step step
4")"1’ 2‘)“1’ (D/v)y (D/b)w\tr sw/| (D/v)y 5) &)
A = 1,3, A = 0.6
b? by .
0.8 3.2 11.6820 0.8410 0. 7666] 1.5966
9 3.6 |1,45638 . 7419 - , 59941 1.3418 4.645
1,0 4.0 | 1,2370 .6186 . 3739 «9914 y
1.2 4.8 <4937 « 2468 -.67391 -,4261
—L = 3.0' —A— = 1.0
by by
0.Y | 2,8 |0,6907 00,2964 -0,0621| 00,2333
.8 3,3 «42c1 «2111 -,3040] -,09239 3.104
9 3.6 L2275 L1137 -,6648] ~.b411 ¢
1.0 4,0 {0 0 -1,2117}|-1,2117
A AL
.bF = 300. bw = 1,5
0.7 2.8 |0,4373 00,2186 -0,1640)| 0,0B46]| .
+8 3.2 » 0068 .1784 -.2868} -,1084 3. 944
.9 3.6 .2706 .1363 ~,4351] -,2998 ¢
1,0 4.0 .1781 .08s0 -,6179] ~-,B6289
’ A
lL = 4,0, — = 3.0
by by
0.7 2.8 [ 0,4448 0.2224 ~0,1166}] 0.1058
.8 3,2 .4008 . 2004 -~,1799 . 0205 3.2393
.9 3.6 .3561 L1776 -.2601}) -.0726 .
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Figure l.- Section comprising one joint.

ky
3 =
] o)
-1, external @
moment
]::3
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Axial load in pounds: T, tension; C, compression.
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Figure 5.~ Illustrative bar problem.
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Figure 6.~ Illustrative plate problen.
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Figure 7.- Plot of ky against Nb, for
plate ptoblem.
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Figure 8.— Infinitely long flat plate under long-
itudinal compression.
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Figure 9.~ Plate with moment applied at near edge, far edge fixed.
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Figure 10.- Plate with moment applied at near edge, far edge hinged.
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Tlgure 11.-~ Plate with moment applied at near edge, far edge free.
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Figure 12.- Plate with moment applied &t near edge,

equal and oppoelte mcment at far edge.
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